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The advection of a passive scalar by incompressible turbulence is considered using recursive
renormalization-group procedures in the differential subgrid shell thickness limit. It is shown explicitly
that the higher-order nonlinearities induced by the recursive renormalization-group procedure preserve
Galilean invariance. Differential equations, valid for the entire resolvable wave-number k range, are
determined for the eddy viscosity and eddy diffusivity coefficients. It is shown that these higher-order
nonlinearities do not contribute as kK —0, but play an essential role as kK — k., the cutoff wave number
separating the resolvable scales from the subgrid scales. The transport coefficients and the associated
eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from

closure theories and experiments.

PACS number(s): 47.10.+g, 47.27.Gs

I. INTRODUCTION

The turbulent transport of a passive scalar, while serv-
ing sound pedagogical purposes, is also of interest in the
spreading of temperature, humidity, and pollution in the
atmosphere as well as in other problems [1]. Here we
shall apply recursive renormalization-group (RNG) pro-
cedures to the subgrid modeling of a passive scalar field
T(k,t) being advected by a turbulent Navier-Stokes ve-
locity field u(k,#). Subgrid modeling is necessary for the
high-Reynolds-number turbulent flows of interest because
of the limitations of current and forseeable supercomput-
ers [2]. Another advantage of considering the problem of
passive scalar transport is that the spectral transport
coefficients (eddy diffusivity and eddy viscosity) deter-
mined from our RNG theory can be compared to those
arising from closure-based theories [3,4]. It should be
noted that the transport coefficients in these closure
theories are determined over the whole resolvable scales.

Recently, two distinct approaches of RNG to fluid tur-
bulence have arisen: one based on the work of Forster,
Nelson, and Stephen [5], called e-RNG, and the other
based on the work of Rose [6], called recursive RNG.
Some aspects of these two approaches have been dis-
cussed [7]. In particular, we point out here that in
€-RNG, a small parameter € is introduced through the
forcing correlation function. Yakhot and Orszag [8] had
to extrapolate from € <<1 to €—4 in order to reproduce
the Kolmogorov energy spectrum. Furthermore, it is
also necessary to take the distant interaction limit [9],
k—0. Thus it is difficult to compare the transport
coefficients generated by Kraichnan [3] and Chollet [4]
with that determined from e-RNG.

In this paper, we continue our application of recursive
RNG [10,11] to turbulence. The basic differences be-
tween the two RNG procedures are that in recursive
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RNG:

(1) The € expansion is not applied.

(2) The turbulent transport coefficients are determined
for the whole resolvable wave-number scales.

(3) Higher-order nonlinearities are generated in the re-
normalized momentum equation and play a critical role
in determining the transport coefficients.

In Sec. II we derive the renormalized evolution equa-
tions for the passive scalar T'(k,¢) and the fluid velocity
u(k,?) as well as the recursion relations from which the
eddy diffusivity and eddy viscosity can be determined.
The turbulent transport coefficients for the second mo-
ments [i.e., for the time evolution of
Uaﬁ(k,t)=(ua(k,t)uB(—k,t)) and the scalar variance
O(k,t)=(T(k,t)T(—k,t))] are determined in Sec. IIL
In Sec. IV, we show that the higher-order RNG-induced
nonlinearities do not contribute to the k —0 limit of the
RNG recursion relations, but play a significant role for
k —k,, where k, is the wave number that separates the
resolvable scale from the subgrid scale. It has been found
to be very difficult to find fixed points (i.e., the transport
coefficients) for the RNG difference recursion relations if
the subgrid shell thickness is chosen too small [10,11]. If
recursion RNG procedures are to be employed success-
fully in more complicated flow problems, then it is neces-
sary that these difference recursion relations be
simplified. Here, we overcome these difficulties by
proceeding to the differential limit of these recursions re-
lations, paying careful attention to the k —O limit. Be-
cause of the presence of higher-order nonlinearities in the
renormalized equations, it is not apparent that the Galile-
an invariance of the RNG model is still preserved. These
questions are addressed in the Appendix, where we prove
that the RNG evolution equations are indeed Galilean in-
variant, a property deemed necessary in any subgrid
model [12]. The spectral eddy viscosity, diffusivity, and
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Prandt]l number are derived in Sec. V, while in Sec. VI we
present our conclusions.

II. RENORMALIZED MOMENTUM EQUATION
FOR VELOCITY AND PASSIVE SCALAR

We consider a passive scalar T'(k, ) being advected by
incompressible turbulence

i"‘.uok2

5 T(k,t)=—ik, [d*ju,(k—j,)T(,t), (1)

with the turbulent velocity field u(k,?) being determined
from the Navier-Stokes equation

i-i—vok2

o uy(k,1)

=M o, (k) [ d%j uglj,thu, (k—j3,0)+ £, (k1) . (2)
Summation over repeated subscripts is understood, and

M o, (k)=[kpD o (k) + K, D o5k )] /2i

and (3)
D,Iﬁ(k)=80¢3—kakﬁ/k2 .

Here p, is the molecular diffusivity, v, the molecular
viscosity, and f, is a random forcing term. The forcing
correlation is given by

(falk,t)fgk’',t")) =Dk 7D 5(k)8(k +k")8(t—1t') ,

(4)
where D denotes the intensity of the forcing [8,11] and y
is an appropriately chosen exponent so as to recover the
Kolmogorov energy scaling in the inertial range (y =3).
The dimension of D, is [Dy]=L*T 3 [13]. Since we are
interested in the passive scalar advection by a velocity
field, no forcing function is introduced in Eq. (1).

A. Outline of the recursive RNG procedure

Since the details of the recursive RNG procedure for
Navier-Stokes turbulence have been presented before
[6,10,11], we only briefly outline the steps here.

(1) The subgrid wave-number region (k.,k;) is parti-
tioned into N shells
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k.=ky<ky_ 1< <k <ky=k,;, (5)
where k, is the wave number separating the resolvable
from the subgrid scales and k, is at the order of Kolmo-
gorov dissipation wave number. k,=f"ky, n=0,..., N,
where f is a factor, 0 < f < 1, measuring the coarseness of
the subgrid partitioning. The limit f— 1 corresponds to
a differential partitioning of the subgrid region (N — o0 ).

(2) The subgrid modes for the first shell, k; <k <k,,
are eliminated from the resolvable scale equation by the
solution of the subgrid scale equation.

(3) A subgrid scale average is performed over the resul-
tant resolvable scale equation. This will result not only in
the introduction of the subgrid scale energy (or
equivalently, forcing) spectrum, but it also results in a
new triple nonlinearity and nonlocal eddy damping func-
tion in the resolvable momentum equation (kK =k ).

(4) The above steps are repeated for each successive
subgrid shell until all the subgrid scales have been re-
moved.

(5) Since the subgrid scales evolve on a faster time scale
than the resolvable scales, a multitime scale analysis can
be performed to simplify the eddy damping function.
The resultant eddy viscosity is a fixed point of an
integrodifference recursion relation.

(6) The recursion relation for the eddy viscosity and
the renormalized Navier-Stokes equation are rescaled.

It should be emphasized that there are two singular
limits [7]: f—1 and k—0. A careful analysis must be
done regarding these two limits and the associated
averaging operations. We will address this issue in the
present paper.

B. Distance Interaction Approximation k —0
Consider the removal of the first subgrid shell and in-
troduce the usual notation
u; (k,t) if ky <k <k,

uZ (k) if k <k, (©)

ua(k,t)=[

and
T (k,t) if ky <k <k,

TD=1r<(k,1) if k <k, .

@)

We find that for k <k, the resolvable scale passive sca-
lar and Navier-Stokes equation can be written as

+ul(k—j§,00T>G,t)rul (k—j,0)T>(,t)] (8)

{—aa?+,uok2 T<(k,t)=—kafd3j[u;(k—j,t)T<(j,t)+u;(k—j,t)T<(j,t>
and

3 . .

5+v0k2 u;(k,t)Zf;(k,t)+MaBy(k)fd3j[uB<(],t)u;(k—j,t)

+2u g Gy (k—j, 0 +ug Gt (k—j,0)] . 9)
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The factor 2 in the Navier-Stokes Eq. (9) arises from the
symmetry in the je>k — j interchange.

We assume isotropy for both the velocity field and pas-
sive scalar, so that the subgrid velocity - passive scalar
correlations are zero [14]:

(u”T>)=0, (10)

where ( ) represents averaging over the subgrid scales.
The details of the implementation of the recursive RNG
procedure to the advection of a passive scalar is a
straightforward generalization of that for Navier-Stokes
turbulence (see, e.g., [15]) and so will not be presented
here.

Consider the resolvable scale Navier-Stokes equation,
Eq. (9). The first and third terms on the right-hand side
(rhs) of (9) are symmetric in j and |k— j| in terms of their
respective wave-number constraints in wave numbers.
As a result, the distant interaction limit k—0 has no
effect on the existence of these terms which will give rise
to the standard quadratic nonlinearity and eddy viscosity,
respectively. However, the second term on the rhs of (9)
has the following constraint: j is in the subgrid while
|[k—jl| is in the resolvable scales. Specifically, the con-
sistency condition requires that, for small k, j satisfies

j>k., and j<k tkz,
where k-j=kjz. Since |z| <1, the range of integration
must be O (k).

Thus the second term on the rhs of Eq. (9) cannot con-
tribute in the limit kK —O0 since the integrand is bounded.
A similar conclusion can be drawn for the second and
third terms in the renormalized passive scalar equation.
Now it is well known [6,10,11] that the higher-order non-
linearities are induced by those terms under discussion.
Since these terms are absent in the k—0 limit, we con-
clude that the higher-order nonlinearities will not con-
tribute to the renormalized momentum equations and re-
cursion relation for the transport coefficients in the dis-
tant interaction limit k —0. However, they will contrib-
ute to the renormalized Navier-Stokes and passive scalar
equations for 0 <k <k,.

These conclusions can be tested directly using numeri-
cal simulation databases. Indeed, energy transfer and
eddy viscosity can be analyzed using results from numeri-
cal simulations by introducing an artificial cut at a wave
number k, that is smaller than the maximum resolved
wave number k,, of the simulation. With this fictitious
separation between the subgrid and resolvable scales, it is
possible to evaluate the effect of the subgrid k., <k <k,
on the resolvable scales k <k,. To facilitate comparison
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FIG. 1. Forced eddy viscosity profiles as determined directly
from LES databases for the fluid velocity at one time instant.
VietlK)=v>(k)+v> <(k), where v (k) arises from measured
LES nonlocal subgrid energy transfer, and v~ <(k) arises from
measured LES local subgrid energy transfer. It is important to
note that v~ <(k)—0 as k—0 and that v~ <(k) arises from the
u < —u” interaction. Note also the cusp behavior in v> <(k) as
k—k,.

with the recursive RNG analysis we consider separately
the contribution to the energy transfer and eddy viscosity
from the second and third term on the rhs of Eq. (9). We
form an energy equation from the momentum equation
and introduce the following notation: T <<(k) is the spec-
trum of energy transfer to mode k resulting from interac-
tions between modes with wave numbers less than k;
T~ <(k) and T (k) represent similar contributions from
interactions with one or both modes above the cutoff k.,
respectively. The equivalent contributions to eddy
viscosity in the energy equations are v~ <(k)
=—T7><(k)/2k*E(k) and v>(k)=—T > (k)/2k*E (k).
To determine the behavior of the energy transfer and
eddy viscosity v~ <(k) and v (k) we measured them in
flow fields obtained from numerical simulations on 1283
meshes of forced turbulence. The forced flow dataset was
generated by Chasnov [16] in an large-eddy simulation
(LES) of the Kolmogorov inertial range, using a subgrid
model derived from the stochastic equation that is con-
sistent with Eddy-damped-quasinormal Markovian
(EDQNM) approximation [17,18].

In Fig. 1, we present a numerical measurement of
v> <(k). It demonstrates that the second term on the rhs
of Eq. (9) does not contribute to the energy transfer pro-
cess as k — 0, consistent with our analysis.

C. Renormalized Navier-Stokes and passive scalar equations
After removing the nth subgrid shell, the renormalized passive scalar equation takes the form

%+un(k)k2 T<(k,t)=—ik, [ d%jug(k—j,)T (k1)
i . . -]B : < (3 3 <{ 3t
—ka ds_]d ]’——fu;(k—j,t)u (3—3J T =(§',t)
h§1f .“n—h(])J2 ) g
MaB‘y(k_J)

—ik, 3 [d%d%
h=1 v

u
. n(k—iDlk—jl?

5L Du s (k—j—j,0)0T <(j,1) . (11)
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The restriction on the wave numbers are the following: ky <j <ky_, in the second integral and ky < |k—j| <ky_; in
the third integral. The other wave-number constraints are as indicated by the superscript on the fields u and 7.

The renormalized Navier-Stokes equation has the form [11]

o 2
[at+v,,(k)k

+2M 5, (k) 3 [d¥d’)

h=1 n—nh

where j is restricted to the subgrid shell in the second in-
tegral. Again, all other wave-number constraints are as
indicated by the superscript.

D. Recursion relations for eddy viscosity and diffusivity

Although the second term on the rhs of Eq. (8) contrib-
uted a new triple nonlinear term, it does not make any
contribution to the renormalized eddy diffusivity in the
momentum equation in the process of removing the next
subgrid shell. The reason is the following:

u> (k—j,0)T <(j,t)
~M o, (k=) uj (j',0)0u (k—j—,0)T <(j,1) >0,
(13)

since the ensemble average will generate a delta function
6(k —j) while k—j is in the subgrid range. This is impos-
sible, and so this second term cannot contribute to the
eddy diffusivity.

After the removal of the (n +1)th subgrid shell, the
sepctral eddy viscosity in the renormalized momentum
equation is determined by the recursion relation [11]

vy 1(K)=v, (k)+8v,(k) , (14)

where
D, = . L(k,j,q)k—jl™”
v, (k)=— d3 2L (15)
v k? ,Eof (k= k—j[?
and
) 21
L(k,j,q)=—k](1 z°)zq°—kj] , (16)

q2

with k-j=kjz and ¢=|k—j|. This difference equation,
after rescaling, has been solved by Zhou, Vahala, and
Hossain [11] and fixed points were readily determined for
finite £ <0.7. However, it was very difficult to determine
fixed points for finer subgrid partition factor f>0.7. In

J

K 2
[at +ulk)k

T(k,t)=—ik, [ d%j u,(k—j,0)T(k,t)

k

a

———*—— [d%d j’wua(k—j,t)uﬁ(j—j’,t)T(j’,t)

,u.(kc )kc(‘m+1)/2

(7)j

u s (k,0)=f 5 (k1) +Mup, (&) [d¥uf (G,0)u s (k—j,t)

— Mg (Du s (505 G—§,0u s (k—j,1) (12)

Sec. IV we shall pass to the differential subgrid limit
f—1 and determine an ordinary differential equation
(ODE) for the renormalized eddy viscosity over the entire
resolvable scale which can be readily integrated.

In a similar fashion, the spectral eddy diffusivity in the
renormalized passive scalar equation can be shown to be
given by, after the removal of the (n + 1)th subgrid shell,

Ly 1K) =, (k) +8u, (k) , (17)
where
kokg »n D gk —)HQ (Ik—jl)
S, (k)= d3j _— , (18)
k? E’of Pn—n(DJ?
with

(ug (k,t0)u; (K',t))=CDp (K)Q(k)(k+k') ,
with
QUk)=E(k)/4mk? .

C is a dimensional constant with the dimensions
[C1=1/T*L'™ 3, where m =23 recovers the Kolmo-
gorov energy spectrum. The renormalized eddy viscosity
and diffusivity are defined as the fixed point of these re-
cursion relations.

III. TURBULENT TRANSPORT COEFFICIENT
IN THE SECOND MOMENTS

The concept of the spectral eddy viscosity and
diffusivity are introduced in the second moments [3,4].
Thus the momentum equation spectral eddy viscosity and
diffusivity are only a partial contribution to the total
transport coefficients. Indeed, from our numerical mea-
surement in Fig. 1, we expect that the triple nonlinear
terms will contribute significantly to the energy transfer
when k is near k.

The final renormalized passive scalar equation is

Js

ik M 5, (k—3j)

w(

_ 3: 4350 T OPY T T < T .
kklm D72 fd jd k—j|G—m72 uglj’,thu, (k—j—j,0)T(,t),
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while the final renormalized Navier-Stokes equation is
%+v(k)k2 U0y t) = o(ky 1)+ M o (K) [ d% (30 (k= 1)
1 ., .
HW oy (&) [[d%) d (5 My Dupisu, (G—§,0u, (k—j,t) .
(20)
[
We consider the contribution of the triple nonlinear 2k, ip
term in the renormalized eddy viscosity to the eddy ET(k):—W‘) f d’jdij'—=—
viscosity first [19]. The second moment for the velocity piKe J
field is defined as X(ua(k—j)uﬁ(j—j’))
Unp(k,t)=Cug(k,hugl—k,1)) . 1) X{T(j)T(—k))
The time evolution of Ug(k,?) is =—2ur(k)k?O(k,t) , (25)
oU 4(k,t)
—"g—t— = —2v(k)k2U 44(k, 1) where
(k)= ——1 Kaky
+2<fa(k,t)uﬁ(_k,t)> KT H(kc)km+1/2 k2
D T sk —))Q(k—j|)
TaB(k,t)"i" Taﬁ(k,t) . (22) deS 3 — (26)
In this equation, Tg p(k;t) is the standard energy and the incompressible condition has been used. It is

transfer from the quadratxc nonlinearity. In contrast,

as(k,1)=—2v(k)k?E(k) is the energy transfer arising
from the RNG-induced triple nonlinearity. It is readily
shown that [19]

vr(k)= 2v(1kc) ;15
ka+k (k,j,q)|k—j| > 2> +173
k. vik—j)
(23)

In Fig. 2, we see that v;(k) is the major contributor to
the cusplike behavior of the spectral eddy viscosity as
k —0.

We now define ©O(k) as the scalar variance
O(k)=(T(— T(k,t)). The dynamic equation for
©(k) can be constructed from Eq. (19) by multiplying by
T(—k,t), followed by an average operation. Again, a
quasinormal approximation is applied to reduce the
fourth moment to the product of the second moments.
Notice that the last term on the rhs of Eq. (19) will not
contribute to the spectral equation since
(ug(j’,t)uy(k—j——j’,t )) ~8(k—j), a condition that can-
not be satisfied since k— j is in the subgrid scale.

The dynamical equation for the scalar variance is

a

o O(k,t)=3P+3T, (24)

— +ulk)k?

where =2 is the usual transfer function for the passive
scalar. =7(k) is the additional contribution from the tri-
ple nonlinear term induced by the recursive RNG pro-
cedure

seen in Fig. 3 that p,(k) is small when k is small. How-
ever, as k —k_, ur(k) increases rapidly.

The solution of vr(k) is very similar to that of u,(k) as
k —k,. They are the major contributions to the strong
cusp in the eddy viscosity found from the test field model
[3] and EDQNM [4].

;

vy (k)
0.8
0.6

0.4

0.01 0.1 k/kc 1

FIG. 2. The drain eddy viscosity v (k) arising from the tri-
ple nonlinearities in the differential subgrid shell limit in recur-
sive RNG. r=k /K, is a parameter in the production-type en-
ergy spectrum, so that E(k)—k* as k—0. K, is a parameter
that controls the location of the peak in E(k). As r increases,
this peak in E (k) moves to smaller k. Backscatter of energy
from the subgrid scales to the larger spatial scales is seen for
k/k. <0.4, the region in which v;(k)<0. For r> 1, there is a
sharp cusp as k —k,.



4392

0.6 ?

0.5

P
+——t

H (k)
0.4

P PRI
L e

PR

0.3

P

02 t

01

0 r————

0.01 0.1 k/k, 1
FIG. 3. The drain eddy diffusivity ur(k) arising from the tri-
ple nonlinearities in the differential subgrid shell limit of the
scalar variance RNG evolution equation. The parameter 7 is as
in Fig. 3. Notice that there is now no backscatter of scalar vari-
ance, since puy(k) is non-negative for all k. There is a strong
cusp as k—k..

Rose [6] discussed the role of the triple nonlinear terms
in physical space. He pointed out that it represents the
possibility of an exchange of scalar eddies between the
resolvable and subgrid scales. This effects is an inherent
property of measurements made on the passive scalar sys-
tem with instruments which have a spatial resolution lim-
ited to an eddy width size greater than 1/k,.

1V. DIFFERENTIAL EQUATIONS FOR THE
RENORMALIZED EDDY VISCOSITY
AND DIFFUSIVITY

The differential limit f—1 is a singular one and this
point has been discussed recently [7]. In particular, it is

Lk, j,q)|lk—jl ™

YE ZHOU AND GEORGE VAHALA 48

related to the assumption of local vs nonlocal interactions
in k. In this section we will calculate the eddy viscosity
and diffusivity under the differential equation limit for re-
cursive RNG.

For recursive RNG we will find that the differential
equations hold throughout the resolvable wave-number
range 0 <k =<k_.. This should be contrasted with the e-
RNG eddy viscosity differential equation, which is valid
only in the k —0 limit [8].

A. Rescaling of the recursion relation
and momentum equations

From the self-similarity properties of the forcing and
energy spectrum in the subgrid range, we expect that the
viscosity v, ;| to be simply related to v, for large n, while
the diffusivity u, ,, is simply related to u,. A rescaling
can be performed on the recursion relation. In particu-
lar, consider

k—k, 1k 27)
and define the dimensionless eddy viscosity %,(k) and
eddy diffusivity g, (k)

v (K)=Dg kP 3y, (k, k) for K<1, (28)
g.(k)=C 1\ 2Km N2y (k, k) for K<1. (29)

To recover the Kolmogorov energy spectrum, y =3
and m =3. Unless mentioned otherwise, for simplicity
we will now drop the tilde notation. Hence 0<k <1.

The recursion relation for the eddy viscosity becomes

fk —(y+1) sz

hiy+1)/3

v, (fji*v, (flk—jDlk—jl?

v, (k)= DBy (fk)+8v,(fk)], (30)
where
kj, Nk—j| ™

U | R
o3 e

1ln*h(fh+l ] Vn

, (31)
Slk—=jhlk—jl?

and the summation term arises from the triple nonlinearity induced by the recursive RNG procedure. The recursion

relation for the eddy diffusivity is

o (R)=F D2 (fR)+ 8, (FK)] (32)
with
(m+1) | k k D5k —j)|k— jltm+2)
oy (pr= L P a3t
wn(f)5?
(k_j)|k__j|*(m+2)
+ h(m+1)/2 d3 Dog , (33)
hgl f f Hn—h(fh+lj)j2

where again the second term on the rhs of Eq. (33) arises from the induced triple nonlinearities. These equations are

valid for any k in the resolvable scales: 0 <k <k
1IB.

.- In the limit k — 0, the triple term contribution — 0, as shown in Sec.
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B. Differential equation limit f —1

We now derive the differential equation from which the transport coefficients for finite k, 0 <k =<1, are determined.
The ODE in the distant interaction limit (k =0) will be derived in the next subsection. After the rescaling, we rewrite

the recursion relation in the form

Vo 1 1(K)—=fOTDBy (fk)=fOTD38y (k) . (34)
For f -1, the number of interaction n — oo . Similarity consideration leads to
Vp+1(k)—>v(k), n—oo . (35)
Let A=1—f. The lhs of Eq. (34) becomes
V) —[1=A1 Ak (1= | L+ 2500 | (36)

As noted earlier [7], the partial average of Rose [6] must be employed in order to ensure the existence of the
differential limit. The partial average is introduced since the distinction between the resolvable and subgrid scales be-
come fuzzy in the limit of a differential subgrid partitioning f—1.

Following Rose [6], we first change the variable from j,z to j,q, with dj dz =(q /kj)dj dg, so that the rhs of Eq. (34)

becomes
. L(k,j,q)
svik)= [djdg |-L
Jdidg ki | vk vk —jh)k—j PPk — ¥
. L(k,j,q)
+ [djdg |-L
J i dq ki | vk v(k—i))k—j2lk—jP

L(k,1,q)

A d
- f1<q<1+k qk3v2(1)qy"1

Afl<j<1+kdj

where

L(k,1,q)=k(1—z%)(k —zg?)/q* (38)
and

L(k,j,1)=kj(1—z*)(kj—z) . 39)

As a result, the fixed-point renormalized eddy viscosity
v(k) is determined from the ODE at O(A),

dvik) [ y+1 1

k—d*k—— Tv(k)z vz(l)[Av(k)‘f‘Bv(k)] s (40)
where
1 1+k  L(k,1,q)
A‘,(IC)—FI1 dq? , (41)
1 pitk, ey
Bk)=—5 [ dj Lk, j,1)j 77 42)

Here z is evaluated at j =1 and g =1, respectively, in the
L (k,j,q) expression, Eq. (16).

The fixed-point ODE for the eddy diffusivity is given
by

kd%(km+y:1#(k):;(11_)[,4#<k)+3#<k)], 43)

where

sin®(k,q,1)

1
A =_L smmik,g,1)
uF) 2k f15q71+kdq gmt! ’ (44)

J
kC
Lk, jo1) c(y—2)/3
k3v2(1)

(y+1)/3

) (37

1
B, (k)=——
u() 2k Yi<j<1+k

dj sin*(k,1,j)j'm V72 | (45)
and sin’(k,j,q) is the square of the sine of the angle
defined by the k and g legs of the (k, j,q) wave-vector tri-
angle. Note that Egs. (43)-(45) are identical with the
eddy diffusivity ODE derived by Rose [6] for the advec-
tion of a passive scalar by a prescribed frozen velocity
field.

C. Differential equations in the k — 0 limit

In the k—0 limit, we have seen that the triple non-
linearities induced by RNG do not contribute to the eddy
viscosity. As a result, the recursion relation will now
contain only the usual quadratic contribution. We
further simplify the analysis by taking the standard
subgrid linear propagator [11] G, !(|k—j|)=[d/d¢
+v,(lk—j)]1~G, '(]j]) as k —o0.

The limits of the integration are given by

1<j—kz<l/f, ltkz<j<l/f+kz. (46)

Thus the rhs of Eq. (34) becomes
v, (k)=S—F—G , 47)
where the integral limits for these terms are

V. 1
48
fl d]f_ldz for S, (48)
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1 1+kz 08 T
[laz ["¥aj for F, 49) 1
00 ' 1/f T
d dj for G . 50
f—1 Zfl/f+kz J 1ot (50)

Terms F and G are the corrections to the symmetric
term S. They are important for a finite bandwidth f.
However, it is easy to show that F +G =0 for f —1 in
the k —0 limit. Hence

1
kvA(1)

1
jy+1

8v2(k)— —A

j=1

Xf_lldz[l—zz]

z-l—%(yz?‘—l) ]

8 1
=A— , 51
15 +3(1) 51
while the lhs of Eq. (34) yields
dvik)  y+1 y+1
k—dk +—3 v(k) = v(k) as k—0,
since dv(k)/dk is bounded as k —0.
Thus, as kK —0,
vik —0)= 3 8 I (52)

Y4115 421)

A similar analysis can be performed on the fixed-point
ODE for the eddy diffusivity, and this was not performed
by Rose [6], who did not consider the k —0 limit careful-
ly. Again, as k—O0, the triple term will not contribute
and we find that the corresponding 8u”(k) term has the
limiting form

S#D(k)—mz;lzﬁ [71%/—3 :lfdz 1+£% ](1—z2)
:Azul(l)f_lldz(l—z2)=A3‘u2(1) (53)

as k—0. Hence, as k —0,
“(k—’o):‘y“%:f;(lﬁ : (54)

D. Momentum equation eddy viscosity and diffusivity

The ODE’s, Egs. (40) and (43), for the momentum
equation eddy viscosity and diffusivity are readily solved
and shown in Fig. 4. We observe that both the eddy
viscosity and diffusivity have a similar plateau structure
as k—0. Notice that the eddy diffusivity plateau is not
obtained in the original numerical calculation of Rose [6]
since Rose did not consider carefully the recursion rela-
tion as k—0. As k—k,, eddy viscosity displays a weak
cusplike behavior while the eddy diffusivity decreases
monotonically as k—k,.. In this case, those curves are
similar to that of Zhou, Vahala, and Hossain [11] and
Rose [6].

0.6 T

05 +——t——d——
k/k

FIG. 4. A plot of the momentum eddy viscosity v(k) and
diffusivity u(k) as a function of the resolvable scales,
0<k/k.<1. These profiles are determined from the ODE’s for
recursive RNG in the limit of differential subgrid shell thick-
ness, f—1.

V. SPECTRAL EDDY VISCOSITY, DIFFUSIVITY,
AND PRANDTL NUMBER

The spectral eddy viscosity is simply the sum of the
contributions from the momentum equation and that of
the effect of the RNG-induced triple nonlinear term in
the energy equation. The result is presented in Fig. 5. It
is apparent that our calculation is in qualitative agree-
ment with that from the closure theory [3,4] and direct
numerical measurements [16,19-21]. In particular, it

138 T
1.2

11 T

o.g —_.:.

08 T

07 I

06 +

05

0.01

c

FIG. 5. The spectral eddy viscosity, diffusivity, and Prandtl
number in the limit of differential subgrid shell thickness, f—1.
The parameter » =2.
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predicts the correct asymptotic behaviors of the eddy
viscosity as k —0 and k —k_ [3].

Our spectral eddy diffusivity shows a plateau at k —0,
in good agreement with the EDQNM calculation of
Chollet [4]. However, the EDQNM calculation is not
unique [4,14,22] and depends on the choice of the relaxa-
tion parameters A, A, and A”. Our diffusivity is in good
agreement with EDQNM [4] with parameters chosen ac-
cording to the direct interaction approximation (DIA)
[23].

We now consider the eddy Prandtl number. Hinze [24]
and Tennekes and Lumley [25] pointed out that the
transfer of the passive scalar may be as effective as that of
the velocity fields. Thus the turbulent Prandtl number is
about 1. Fulachier and Dumas [26] carried out experi-
ments in the turbulent boundary layer on a slightly heat-
ed plate in order to establish, mainly for the larger scales
of motion, any analogy that may exist between the tem-
perature and velocity fluctuations. Measurements were
made in an open-return low-speed wind tunnel driven by
a centrifugal blower. The turbulent boundary layer
developed on the flat floor of the test section. The values
of turbulent Prandtl numbers found experimentally [26]
in the boundary layer are in the range of

0.6=Pr°=0.8 . (55)

Herring et al. [22] compared—both analytically and
numerically—two related spectral closures for the prob-
lem of decay of scalar fluctuations convected by isotropic
turbulence. One was the test field model (TFM) [27,28]
and the other was EDQNM. Lesieur and Chollet [29]
and Herring et al. [22] found that the eddy Prandtl num-
ber

Pré= in}‘— . (56)
6A
Equation (56) is the case in which the background energy
spectrum is zero (for k less than some given wave number
ko). There is a corrective factor [22] if a more realistic
assumption is made on the spectrum,

E(k)=8(k)+E'(k) ,
k" if k <k,

EO= N (kork)=57kp it k2 ko -

The corrective factor I’ ranges from ¢ (for n =1) to %

(for n= ). Herring et al. [22] reported the work of
Quarini, who studied the parameter range of A'/A"
which gives a Pr¢ within the experimentally prescribed
bounds, Eq. (55). Quarini’s calculation indicates that the
Lagrangian history direct interaction approximation
(LHDIA) [30], A'=0, is the best choice (Pr*=0.6). Her-
ring et al.[22] also gives the correspondence between the
EDQNM and TFM. Now in the TFM, there are three
parameters g,, &g, and g¢. They find that for correspon-
dence between EDQNM and TFM,

28%3=1"/1,

gi=x"/x.

(58a)
(58b)
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Substituting (58) into (56), we found that

e

_285+85
-

When the TFM parameters are chosen according to the
DIA (g%, =0.5, §§= 1), the eddy Prandtl number
Pr°=0.33. On the other hand, when the TFM parame-
ters are chosen according to LHDIA (g3=0, g 3=3.61),
the eddy Prandtl number Pr*=0.6.

The EDQNM spectral Prandtl number was investigat-
ed by Chollet [4]. He found that it depends on the choice
of these EDQNM parameters [4,14]. In the LHDIA
case, Pré(k) remains approximately equal to 0.6, even in
the vicinity of wave-number cutoff k.. This is very close
to the finding of Herring et al. from the TFM and
EDQNM. However, for the DIA case, Pré(k) has a pla-
teau value of 0.33, with a cusplike behavior near k., with
Pré(k,)=0.6.

Recently, the spectral Prandtl number was studied via
the numerical simulations [20]. The large-eddy simula-
tions, with subgrid model of spectral eddy viscosity and
conductivity of Kraichnan [3] and Chollet [4], were per-
formed at high Reynolds number. The highest resolution
of Leisuer and Rogallo [20] is 1283. This corresponds to
a cutoff wave number k.=64. Using a fictitious cutoff
wave number k. (k;=32), Leisuer and Rogallo evaluated
the kinetic energy and scalar transfers, resulting from
triads k,p,q, where k<k! and p or g>k./. These
transfers were calculated directly from the simulated ve-
locity and scalar fields, and when divided by
[E(k.)/k.]1'/?, give, respectively, the spectral eddy
viscosity and diffusivity. Lesieur and Rogallo [20] found
their spectral Plandtl number Pré(k) only rose from 0.2 at
small k to 0.8 near the cutoff. Lesieur [14] recently found
that the turbulent Plandtl number may be much closer to
1 than that of Lesieur and Rogallo [20].

The spectral RNG Prandtl number can be easily deter-
mined from our calculated eddy viscosity and diffusivity
(Fig. 5). It is a function k and has values ranging from
0.72 to 0.92. Note that our turbulent Prandtl number in
the £ —0 limit is very close to that reported by Yakhot
and Orszag [8] (0.7179).

VI. SUMMARY AND DISCUSSION

In this paper we have applied recursive RNG to the
problem of the advection of a passive scalar by in-
compressible turbulence. We have clarified the role of
the higher-order RNG-induced nonlinearities and show
the following: (a) The renormalized evolution equations
are still Galilean invariant (i.e., these higher-order non-
linearities do not destroy the Galilean invariance of the
original equations). This is an important property that
needs to be preserved in subgrid modeling, especially as
one proceeds to more complicated flows and boundaries.
(b) These higher-order nonlinearities do not contribute to
the transport coefficients as k —0.

Now the typical by-product of the recursive RNG
methods is a complicated integrodifference recursion re-
lation to be solved for the eddy transport coefficients
[6,10,11]. This recursion relation is a function of the
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subgrid shell thickness parameter f. Here, we have
shown how to pass to the differential subgrid shell thick-
ness limit f—1. In this limit, we recover an ordinary
differential equation for the eddy coefficients—an equa-
tion that is readily solved.

The ODE that is derived in recursive RNG is funda-
mentally different from that derived by €-RNG tech-
niques. In e-RNG, one is forced into taking the k-—0
limit [8,9], and the independent variable of the resulting
ODE is actually the cutoff wave number k.. In recursive
RNG, the independent variable is the resolvable scale
wave number k, 0 <k <k_, with a renormalization trans-
formation that permits k, to be fixed. There is no renor-
malization transformation made in the Yakhot-Orszag
€-RNG formulation. In the limit k —0, the eddy trans-
port coefficients from both theories are in very close
agreement. This is to be expected since the higher-order
recursive RNG induced nonlinearities—0 as k —0. The
slight difference in the eddy coefficients (in the kK —0) be-
tween the two theories can be attributed to the € expan-
sion procedure and to the treatment of k_, i.e., whether
one performs RNG rescaling transformations (recursive
RNG) or not. The important effect of the triple non-
linearities introduced by the recursive RNG procedure
are clearly seen in the second moment equations, espe-
cially for resolvable wave number k —k,.

The spectral eddy viscosity, diffusivity, and Prandtl
number are determined and we find good agreement with
both closure theory [3,4,14,22] and direct numerical
simulations [16,19-21].

APPENDIX: GALILEAN INVARIANCE OF THE
RENORMALIZED NAVIER-STOKES AND
PASSIVE SCALAR EQUATIONS

In this Appendix, we turn our attention to the question
of the Galilean invariance of the renormalized Navier-

du X (k*,1)
ar*

+ Upgik ju k (k*, 1)+ vok *2[Ug, 8(k*)+uk (k*,1)]=
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Stokes and passive scalar equations (19) and (20). The
importance of Galilean invariance in turbulence model-
ing has been emphasized by Speziale [12]. To be con-
sistent with the basic physics, it is required that the
description of the turbulence be the same in all inertial
frames of reference. The appearance of the triple non-
linear term, which is a function of the resolvable scales
velocity fields, makes the property of the Galilean invari-
ance of our recursive RNG procedure not apparent. We
now show that both the renormalized Navier-Stokes
equation and the renormalized passive scalar equation are
Galilean invariant.

1. Galilean invariance in Navier-Stokes equation: Review

The Galilean transformation is
x—x* —UOI*, t—t*.

Thus one has

3 _ 3
= *—U s =

u=u 0 3 ax * ,

9_9 3

at  arr  Paxg

While the Galilean transformation for the Navier-Stokes
equation in physical space is trivial, the Galilean trans-
formation in wave-number space is less obvious, due to
the lack of differential operations. For convenience, we
first review how Galilean invariance is preserved for the
Navier-Stokes equation in the wave-number space.

Under the Galilean transformation, the lhs of the
Navier-Stokes equation [cf. Eq. (2)] becomes

where in the last step, we have used the 8 function property k *25(k*)=0.
Under the Galilean transformation, the rhs of the Navier-Stokes equation [cf. Eq. (2)] becomes

M g, (k*) [d%j[u}(§*,6)— Uged(3*)] [ (k* —j*,1)— Up, 8(k* — j*)]

du X (k*,1)
T+Uoﬁik;;,u;(k*,t)+vok*2u;(k*,t) ,

(A1)

=M g, (k*) [ d3j*ul (3,0l (k* —j*, )+ iUk jut(k*,1), (A2)

where we have used the property of the § function, the incompressible condition, and

MaBy(k*)UOBu:(k*,t)=Uoﬁkguz(k*,t)/Zi .

Thus, as expected, the Navier-Stokes equation is invariant under a Galilean transformation due to the cancellation of

the second term on the rhs of Egs. (A1) and (A2).

2. The renormalized Navier-Stokes equation under a Galilean transformation

To show that the renormalized Navier-Stokes equation is invariant under a Galilean transformation, we need only
consider the recursive RNG-induced triple nonlinear term, denoted by 7:
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MEBY ()
— t (k—j,t) . A3
k)2 ug(j—3 0, (j,t)u, Jt) (A3)

T=2M 5, (k) [ d% d%f' [;f—

It is important to note that j is in the subgrid.
Under a Galilean transformation, Eq. (A3) becomes

s |t 4/3Maﬁy(j
T*=2M 5 (k*) | d°j*d°j'™* —————[u g (j*—j§*t)— Uy d(j*—
aBy f .] kc V(k )]*2[ B ] J op ] J ]
X[u;'(j'*,t)*U07'5(.i)'*][u*(k*_j*,t)—UOy&k*_j*)] :
Since j* is in the subgrid scale, while j’* and k* are in the supergrid, 6(k* —j*) and 8(j* —j'*) can never be simul-
taneously satisfied. As a result,
S M ()
T*=2M .5, (k* fd3j*d3 jr* lk“ 7%—)—1,;2— pG =3 0[uy (37%,0) = Uy, 8(3 ) Juy (k* —j*, 1) . (A4)
WK )]

Now only one term in Eq. (A4) could violate the Galilean invariance of the renormalized Navier-Stokes equation.
However,

fd3j'*5(j'*)u;}(j*-j'*,t)——»u}(j*,t) X

This is not permissable since u =uz* and j* is restricted to the subgrid. Thus 7=T*. Hence the triple term is

Galilean invariant.

3. Galilean invariance in the renormalized passive scalar equation

The renormalized passive scalar equation has two triple nonlinear terms. The proof of the Galilean invariance of the
renormalized passive scalar equation proceeds in a similar manner to that for the renormalized Navier-Stokes equation.
For the first triple nonlinear term, labeled 7, after a Galilean transformation we found

~fd3j*d3j'*[u<*(k*—j*,t)+ans(k*'—j*)][ul;*(j*_j'*,t)‘*”UoﬁS(j*_j’*)]T<*(j,t)
= [d%*d*u s (k* =% Ou g (* =T <*(j,1)

since j* is in the subgrid while k*,j'* are in the resolvable scale. Thus the 8(k*—j*) and 8(j* —j'*) can never be
satisfied simultaneously. .
The second triple nonlinear term, labeled 7, has the following structure after the Galilean transformation.

fd3]*d3‘]’*[u :* t)+U036( r*)][u;*(k*_j*_jr*’t)_'_ons(k*_j*__j/*)]T<(j,t)

—»fd3j*d3[u§*(j'*)+U038(j’*)][u<*(k*—j*—j’*,t)T<(j,t)

Y
—>fd3j*d3u§*(j’*,t)u7<*( *_J _J:* t) <(j,t) ,

where the last two steps follow from the wave-number constraints. k,j,j’ are in the resolvable scales while |k—j| is in
the subgrid scale. Specifically, the first step follows since §(k* — j* —j'*) can never be satisfied. The second step follows
since 8(j*) would force u S * (k*—j*—j'*)—u  * (k* —j*). This is not permissible since |k — j| is in the subgrid while
uy, by definition, is in the resolvable scale. Thus the renormalized passive scalar equation is also Galilean invariant.
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